Skip to contents

to perform RD using GP functions

Usage

gp_rdd(
  X,
  Y,
  cut,
  alpha = 0.05,
  b = NULL,
  trim = FALSE,
  trim_k_value = 0.1,
  scale = TRUE
)

Arguments

X

forcing variable

Y

Y vector (outcome variable)

cut

cut point

alpha

confidence level (default = 0.05)

b

bandwidth (default = NULL)

trim

a logical value indicating whether you want to do an automatic trim at a specific value of trim_k_value (default=FALSE)

trim_k_value

a numerical value indicating the kernel value that you want to trim above (default = 0.1)

scale

a logical value indicating whether you want to scale the covariates (default = TRUE)

Value

tau

an estimated treatment effect

se

the standard error of tau

Examples

n <- 100
tau <- 3
cut <- 0
x <- rnorm(n, 0, 1)
y <- rnorm(n, 0, 1) + tau*ifelse(x>cut, 1, 0)
gp_rdd.out <- gp_rdd(x, y, cut)
gp_rdd_plot(gp_rdd.out)